THERMODYNAMICS

State Functions	Path Function
Only Depends on Initial and Final State	Depends on Path followed from state A to B
ΔU, ΔH, ΔA, ΔG, P, V, T	q (Heat) and w (Work), C
$\Delta f = 0$ for Cyclic process	Non-Zero for Cyclic Process
Extensive Properties	Intensive Properties
Mass/Amount dependent	Mass/Amount Independent
Internal Energy (U), Enthalpy (H), Gibbs Free Energy(G), Mass (m), Entropy (S), Volume (V).	Temperature (T), Boiling & Melting Point, Specific & Molar Heat Capacity, Refractive Index, Density
Additive in Nature	Non-Additive in Nature

- Ratio of two Extensive Properties is Intensive in nature, eg: Mass/Volume = Density (Intensive)
- If Extensive property is defined per unit (mass, mole), it becomes intensive, e.g. Molar Volume (V/n)

Some Important Formulas from 1st Law	
P-V Work	- $P_{ext}\Delta V$
1st Law of Thermo	$\Delta U = q + w$
1st Law targets energy conservation (not for open system)	
Enthalpy Change	$\Delta H = \Delta U + P\Delta V$
Heat at constant V	$\Delta U = q_v$
Heat at constant P	$\Delta H = q_p$
Exothermic Process	$\Delta H < 0$; $\Delta H_r > \Delta H_p$
Endothermic Process	$\Delta H > 0$; $\Delta H_r < \Delta H_p$
Relation Between ΔH and ΔU for Ideal Gas	$\Delta H = \Delta U + \Delta ng RT$
Reversible Process	Irreversible Process
Slow process carried out in infinite steps	Instant Process which can also be called Natural process.
	Infinite steps to remove grains of sand in A

Constant Ext. pressure

Instant Removal of weight in B

State Functions

Path F.

Only n-

Work under P-V Diagram

$$dw = -P_{ext} \cdot dV$$

$$w = -\int_{V_1}^{V_2} P_{\text{ext}} \, dV$$

$$P \uparrow A \rightarrow B$$
 $C \rightarrow D$

$$w_{net} = w_{AB} + w_{BC} + w_{CD}$$

BC is iso-choric process

 $w_{BC} = 0$

Work done is area enclosed in cycle

$$w = \pi. a. b$$

Clockwise = +ve work done

Anti-Clockwise = -ve work done

PVDiagram for different processes and work done

- Isothermal work > Adiabatic work
- Reversible work > Irreversible work
- Maximum work :
 Reversible isothermal process.

Heat Capacity (C)

Amount of Heat required to increase
the temperature by 1° (J/K)

$$C = \frac{+q}{\Delta T}$$

Molar Heat Capacity (C_m)

Heat Capacity per mole (J/mol.K)

$$C_{\rm m} = \frac{+q}{n\Delta T}$$

Molar Heat Capacity (C_m)

Heat Capacity per gram (J/gm.K)

$$C_s = \frac{+q}{m\Delta T}$$

C at constant volume

$$\overline{q_p = C_p.\,dT = dH}$$

$$q_v = C_v \cdot dT = dU$$

- C = Path function; Cp and Cv = State functions.
- Heat capacity is an extensive property. Cm and Cs are intensive properties.
- For any substance, C_{pm}-C_{νm} = R and C_p/C_ν = γ
- For solids and liquids, C_{pm} ≃ C_{vm}
- Heat capacity increases with increase in temperature due to increase in vibrational degree of freedom.
- C (isothermal) = ∞ > C_p > C_v > C (Adiabatic) = 0

FUN FACT

Balloon with water doesn't bursts.

Oue to Cv of water

Calculated U,H,q,w for the two main processes

Isothermal Process

$$\Delta \mathbf{U} = 0 \quad \Delta \mathbf{H} = 0 \quad \mathbf{q} = -\mathbf{w}$$

Irreversible work

$$w = -P_{ext}\Delta V = -P_{ext}\left(\frac{nRT}{P_2} - \frac{nRT}{P_1}\right)$$

Reversible work

$$ww = 2.303nRTlog \frac{V_2}{V_1} = 2.303nRTlog \frac{P_1}{P_2}$$

Adiabatic Process

$$\Delta \mathbf{U} = nC_{\mathsf{v}} \Delta \mathbf{T} \quad \Delta \mathbf{H} = nC_{\mathsf{p}} \Delta \mathbf{T} \quad \mathbf{q} = 0$$

Irreversible work

$$w = \frac{nR\Delta T}{\gamma - 1}$$
 Find Final Temperature using
$$nC_{v,m}\Delta T = -P_{\text{ext}}(V_2 - V_1)$$

Reversible work

$$w = \frac{nR\Delta T}{\gamma - 1}$$
 Find Final Variables using
$$TV^{\gamma - 1} = Constant$$

$$PV^{\gamma} = Constant$$

$$T^{\gamma}P^{1-\gamma} = Constant$$
 16

Carnot Cycle

Heat Engine - Thermal Efficiency

Total amount of heat absorved

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$

Expansions AB: Isothermal; BC: Adiabatic Compressions CD: Isothermal; DA: Adiabatic

A state function is obtained from the derivation of Carnot cycle. i.e. Entropy

$$dS = \frac{dq_{rev}}{T}$$

ENTROPY (S)

- Degree of Randomness.
- S (Gas) > S (Liquid) > S (Solids)
- Entropy is 0 in cyclic process (State function).
- It is an Extensive property
- Units are J/K.

Entropy in an Isolated system

- dS > 0 (Irreversible Process, Spontaneous)
- dS = 0 (Reversible Process, at Equilibrium)
- dS < 0 (Impossible process or NON-Spontaneous)</p>

Second Law of Thermodynamics

- Entropy of universe is always increasing.
- ΔS _{universe} = ΔS_{sys} + ΔS_{surr} = 0 (Reversible process)
- ΔS. universe> 0 (Irreversible process)

General Formulas for Entropy

$$\Delta S = n C_V ln \frac{T_2}{T_1} + n R ln \frac{V_2}{V_1} \quad \begin{array}{l} \text{In Iso-choric process,} \\ \text{2nd Term becomes 0} \end{array}$$

$$\Delta S = n C_p ln \frac{T_2}{T_1} + n R ln \frac{P_1}{P_2} \quad \begin{array}{l} \text{In Iso-baric process,} \\ \text{2nd Term becomes 0} \end{array}$$

General Formulas for Entropy

In Iso-thermal process, 1st Term becomes 0 In Reversible Adiabatic process, q=0. Thus, $\Delta S=0$

Entropy during phase change

$$dS = \frac{dQ_p}{T} = \frac{dH}{T} = \frac{mL}{T}$$
 At Constant T & P

Gibbs Free energy (G)

- The decrease in Gibbs free energy is equal to the maximum useful work.
- $(-\Delta G = w_{useful})$
- It is a state function, Used to calculate Spontaneity.
- · Extensive Property
- Used to calculate Spontaneity.

Gibbs Helmholtz Equation & Spontaneity

 $\Delta G = \Delta H - T \Delta S$ Spontaneity means that the reaction can be carried out on it's own (it is feasible). All Natural processes $\Delta S < 0$ are spontaneous.

Spont. at all T	Spont. at High T
Spont. at Low T	Non Spont.

 $\Delta H > 0$

 $\Delta H < 0$

THERMOCHEMISTRY

(NEXT FACE)

Enthalpy of a Reaction (Δ,H)

The heat exchanged during complete course of reaction at constant pressure.

Exothermic : Negative $\Delta_r H$

Endothermic : Positive Δ_rH

Hess's law of constant summation

At Constant T & P, the total enthalpy change for the reaction is the sum of all changes. (Single or Multistep)

$$CH_4(g) + 2O_2(g)$$

$$\Delta_r H = \Delta H_1 + \Delta H_2$$

$$\Delta_r H = -890 \text{ kJ}$$

$$CO(g) + 2H_2O(l) + \frac{1}{2}O_2(g)$$

$$\Delta H_2 = -283 \text{ kJ}$$

$$CO_2(g) + H_2O(l)$$

- 1. Enthalpy of Phase Transition
- 2. Enthalpy of Formation
- 3. Enthalpy of Combustion
- 4. Lattice Enthalpy
- 5. Hydration Enthalpy
- 6. Enthalpy of Solution
- 7. Enthalpy of Neutralisation
- 8. Enthalpy of Atomisation and Bond Enthalpy

Different Types of Enthalpy

20

5)

Enthalpy of Phase Transition (\Delta H transition)

The ΔH of reaction when 1 mole of a substance in one physical state converts to another physical state.

Fusion, Melting, Vaporisation (+ve)

Freezing (-ve)

Enthalpy of Formation ($\Delta_f H$)

- The ΔH of reaction when 1 mole of a substance is produced from its constituent elements which are present in their free state.
- (Δ H) for free state elements is considered as Zero.
- Some elements in their free state are
 - F₂(g); Cl₂ (g); Br₂(I); I₂ (s); P₄ (s); H₂ (g); O₂ (g);
 S₈ (s); C (s, Graphite); Metal M(s); Hg (I).
- For any Reaction,

$$\Delta_r H = \sum_{P} V_P \Delta_f H_P - \sum_{R} V_R \Delta_f H_R$$

Enthalpy of Combustion (Δ_cH)

 ΔH of the reaction in which one mole substance is burnt in the excess of O_2 (air). Always (-ve ΔH).

$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow x C O_2 + \frac{y}{2} H_2 O_2$$

Enthalpy of a Reaction (Δ_rH)

The heat exchanged during complete course of reaction at

Lattice Enthalpy

Energy to convert 1 mole of Ionic Solid into gaseous ions

Energy Required to Break.

+ (

Hydration Enthalpy

CC

E

Energy produced when 1 mole of the gaseous ions is mixed with H₂O (water) to produce hydrated ions.

This Stabilises Ions. Thus, -ve AH

e.g. $CuSO_4(s) + 5H_2O(l) \rightarrow CuSO_4.5H_2O(l)$

Enthalpy of Solution (ΔH_{sol})

1 mole substance (s/l/g) converts to aqueous substance e.g. Glucose dissolved in water to form a solution.

Enthalpy of neutralisation

- One gram equivalent of the acid is completely neutralised by a base in dilute solution.
- SA & SB releases -57.1 kJ/mol at 298 K.
- SA-WB, WA-SB, WA-WB < -57.1 kJ/mol